Image Fusion and Enhancement via Empirical Mode Decomposition

نویسندگان

  • Harishwaran Hariharan
  • Andrei Gribok
  • Mongi A. Abidi
  • Andreas Koschan
چکیده

In this paper, we describe a novel technique for image fusion and enhancement, using Empirical Mode Decomposition (EMD). EMD is a non-parametric data-driven analysis tool that decomposes non-linear non-stationary signals into Intrinsic Mode Functions (IMFs). In this method, we decompose images, rather than signals, from different imaging modalities into their IMFs. Fusion is performed at the decomposition level and the fused IMFs are reconstructed to realize the fused image. We have devised weighting schemes which emphasize features from both modalities by decreasing the mutual information between IMFs, thereby increasing the information and visual content of the fused image. We demonstrate how the proposed method improves the interpretive information of the input images, by comparing it with widely used fusion schemes. Apart from comparing our method with some advanced techniques, we have also evaluated our method against pixelby-pixel averaging, a comparison, which incidentally, is not common in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi Sensor Image Fusion using Empirical Mode Decomposition

Image fusion is a process of combining relevant information from two or more images from different sensors based on certain algorithm. Many algorithms have been proposed for pixel level image fusion. In this paper, Empirical Mode Decomposition is the recent, powerful tool for adaptive multi scale analysis of non stationary signals that decomposes them into Intrinsic Mode Functions (IMFs). Hence...

متن کامل

Hybrid image fusion scheme using self-fractional Fourier functions and multivariate empirical mode decomposition

Image fusion has emerged as a promising area of research and a bivariate empirical mode decomposition based fusion scheme has recently been proposed in the literature. In this paper, a hybrid fusion scheme combining self-fractional Fourier function (SFFF) decomposition and multivariate empirical mode decomposition is proposed. In the proposed image fusion technique, images to be fused are decom...

متن کامل

Multifocus Image Fusion Based on Empirical Mode Decomposition

When scene contains objects that are on different depth of focus, display all areas of the picture very well isn't possible. Combining information from multiple images of the same scene into image with better description of the scene than any of the individual source images, the technique of multifocus image fusion has been attracting more attention in the field of digital image processing in l...

متن کامل

Heat Transfer Enhancement of a Flat Plate Boundary Layer Distributed by a Square Cylinder: Particle Image Velocimetry and Temperature-Sensitive Paint Measurements and Proper Orthogonal Decomposition Analysis

The current empirical study was conducted to investigate the wall neighborhood impact on the two-dimensional flow structure and heat transfer enhancement behind a square cylinder. The low- velocity open-circle wind tunnel was used to carry out the study tests considering the cylinder diameter (D)-based Reynolds number (ReD) of 5130. The selected items to compare were different gap he...

متن کامل

Fusion of Multi-Scale Visible and Thermal Images using EMD for Improved Face Recognition

This paper presents the implementation of face recognition system using JDL framework. Fusion of visible and thermal images enhances the recognition rate and efficiency under varying illumination conditions. In this system, registration of visible and thermal images is performed using Fourier based method and fusion is performed using Empirical Mode Decomposition (EMD). The feature extraction a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006